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--------------------------------------------------------ABSTRACT----------------------------------------------------------- 

In this article, a topological existence and uniqueness proof is given for a non-linear boundary value 

problem arising due to the steady, laminar stagnation point flow of an incompressible viscous fluid 

near a rough surface. The no-slip boundary conditions are replaced by the partial slip boundary 

conditions, owing to the surface roughness. Further, numerical results are also given to validate the 

qualitative analysis of the solution.  
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I. INTRODUCTION 
The Hiemenz flow of a viscous fluid has drawn the attention of many researchers due to its practical 

and theoretical importance. This is one of the most extensively studied problems. This 2 dimensional stagnation 

flow is popularly known as the ’Hiemenz flow’ due to the pioneering work of K. Hiemenz [1]. The classical 

Hiemenz flow problem has been extended in many ways including diverse physical effects. One can refer the 

work of Sahoo [2] and all references therein regarding the stagnation point flow and heat transfer of Newtonian 

and non-Newtonian fluids. The no-slip boundary conditions are the central tenets of the Navier-Stokes theory. 

However,  some rarefied gases and non-Newtonian fluids exhibit slip boundary conditions. Wang [3] has 

considered the stagnation point flow with slip boundary conditions, where the amount of relative slip depends 

on linearly on the local shear stress. He obtained an exact numerical solution of the Navier-Stokes equations. In 

this paper, we have used a topological shooting argument [4, 5] to study the existence and uniqueness of the 

resulting third-order nonlinear free boundary value problem with slip boundary conditions. 

 

II. FLOW ANALYSIS 
We consider the steady, two-dimensional, in-compressible, viscous fluid normally impinging on a 

rough wall. The wall coincides with the x-axis, and fluid occupies the domain 𝑦 > 0. The free stream velocity is 

given by 𝑈𝑥 = 𝑎𝑥,𝑈𝑦 = −𝑎𝑦, 𝑎 being a constant. The corresponding equations of motion and continuity are 

given by 

 (𝑢  .∇   )𝑢  = −
∇   𝑃

𝜌
+ 𝜈∇2𝑢   (1) 

 ∇   .𝑢  = 0, (2) 

where 𝑢  = (𝑢𝑥 ,𝑢𝑦) is the fluid velocity, 𝜌 is the fluid density and 𝜈 is the kinematic viscosity.  

 

Relevant boundary conditions for the rough wall are [3]  

 𝑢𝑥 = 𝜆∗
𝜕𝑢𝑥

𝜕𝑦
,𝑢𝑦 = 0    𝑎𝑡   𝑦 = 0 

 𝑢𝑥 → 𝑎𝑥    𝑎𝑠     𝑦 → ∞. (3) 

Here 𝜆∗ denotes the slip coefficient. Using the following similarity transformations 
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 𝑢  = 𝑎𝑥𝑓′(𝜁)𝑖 −  
𝑎𝜇

𝜌
𝑓(𝜁)𝑗  (4) 

 𝜁 =  
𝑎𝜌

𝜇
𝑦 (5) 

and following Wang [3], the equations of motion reduce to 

 𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 1 = 0. (6) 

The boundary conditions (3) become 

𝑓(0) = 0,    𝑓′(0) = 𝜆𝑓′′(0), (7) 

𝑓′(∞) → 1. 

Here 𝜆 = 𝜆∗(
𝑎

𝜈
)

1

2  is the slip parameter. 

 

III. EXISTENCE AND UNIQUENESS RESULTS 
In this section, the existence and uniqueness of the solution of Eq. (6) subject to partial slip boundary conditions 

(7) are discussed. We have to prove the following two theorems: 

Theorem 1  (Existence) For any 𝜆 > 0, the boundary value problem (6)-(7) has a solution and further the 

solution is monotonic increasing.  

Theorem 2  (Uniqueness) The solution of the boundary value problem (6)-(7) is unique for 𝜆 > 0.  

We will use the shooting argument to prove the existence and uniqueness result of the solution of the boundary 

value problem (BVP) (6)-(7). In past, this topological argument has been adopted by many researchers [4, 6, 7] 

for its advantages such as it proves not only the existence results but also yields considerable information about 

the solution. In this method, we have to find suitable value of 𝑓′′(0), so that the solution 𝑓(𝜁) satisfies the 

terminal boundary conditions 𝑓′(𝜁∞) → 1. Hence, we will study the ordinary differential equation 6 with respect 

to the following initial conditions 

 𝑓 0 = 0, 𝑓 ′ 0 = 𝜆𝛼, 𝑓′′(0) = 𝛼, (8) 

where 𝜆 ≥ 0. Since 𝛼 is a free variable, the solution is a function of both 𝜁 and 𝛼, so we will denote the solution 

as 𝑓′(𝜁,𝛼). 

Now, we define A and B subset of (0,∞) 

𝐴 = {𝛼 > 0: 𝑓′′(𝜁;𝛼) = 0 before 𝜆𝛼 < 𝑓′ < 1} 

𝐵 = {𝛼 > 0: 𝑓′(𝜁;𝛼) = 1 before 0 < 𝑓′′(𝜁;𝛼) < 𝛼} 

 

 

The lemmas defined below are used to prove Theorem 1. 

Lemma 1 𝐴 and 𝐵 are disjoint and open. 

Proof : The sets A and B are clearly disjoint. To prove 𝐴 is open, let us choose a point 𝛼 in 𝐴. Then there exists 

𝜁0 such that 𝑓′′(𝜁0 ,𝛼) = 0 but 𝜆𝛼 < 𝑓′(𝜁,𝛼) < 1 on 𝜁 ∈ (0, 𝜁0]. Now from Eq. (6), 𝑓′′′(𝜁0 ,𝛼) = 𝑓′2(𝜁0 ,𝛼) −
1 = (𝑓′(𝜁0 ,𝛼) − 1)(𝑓′(𝜁0 ,𝛼) + 1) ≠ 0.  

Hence, by continuous solutions of initial value problem with its initial conditions, there exists a neighborhood of 

𝛼 such that for all points in the neighborhood, 𝑓′′(𝜁) has a root and 𝜆𝛼 < 𝑓′(𝜁) < 1. Therefore, 𝐴 is open. 

Similarly, it can be proved that the set 𝐵 is open. 

Lemma 2  If 𝛼 is sufficiently small, then it is in 𝐴. 

Proof : Let us first consider 𝛼 = 0. Since 𝜆 > 0, from Eq. (6) we have 𝑓′′′(0;𝛼) = 𝑓′2(0;𝛼) − 1 = 𝜆2𝛼2 −
1 = (𝜆𝛼 − 1)(𝜆𝛼 + 1) < 0. Hence, we have 𝑓′′(𝜁; 0) < 0 and 𝑓′(𝜁; 0) < 1 in small neighborhood of 𝜁 = 0. 

Therefore, by continuous solutions of initial value problem with its initial conditions, there exists some 𝛼 > 0 

such that 𝑓′′(𝜁;𝛼) < 0 and 𝑓′(𝜁;𝛼) < 1 for 𝜁 is in neighborhood of 𝜁 = 0. But for any 𝛼 > 0 we have 

𝑓′′(0;𝛼) = 𝛼 > 0. So, there exists a first 𝜁0 such that 𝑓′′(𝜁0;𝛼) = 0 and 𝑓′(𝜁;𝛼) < 1 for 𝜁 ∈ (0, 𝜁0]. Thus, 

when 𝛼 > 0 is sufficiently small, then it is in 𝐴. 

Lemma 3  If 𝛼 is sufficiently large, then it is in 𝐵.  
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Proof : Integrating Eq. (6) in between 0 to 𝜁 we get,  

   𝑓′′(𝜁) − 𝛼 =  
𝜁

0
(−𝑓𝑓′′ + 𝑓′2 − 1)𝑑𝜏 

 𝑓′′(𝜁) = 𝛼 − 𝜁 − 𝑓(𝜁)𝑓′(𝜁) + 2 
𝜁

0
𝑓′2(𝜏)𝑑𝜏. (9) 

We shall use the above identity to claim that sufficiently large 𝛼 is in B i.e., 𝑓′(𝜁;𝛼) = 1 strictly when 0 <
𝑓′′(𝜁;𝛼) < 𝛼. First, suppose that the affirmation is false. Then one of the following assertions must occur:   

    • 𝑓′′(𝜁;𝛼) = 0 at some point 𝜁 where 𝑓′(𝜁;𝛼) < 1. 

    • 𝑓′′(𝜁;𝛼) > 0 and 𝑓′(𝜁;𝛼) < 1 for all 𝜁. 

    • 𝑓′′(𝜁;𝛼) = 0 and 𝑓′(𝜁;𝛼) = 1 simultaneously.  

We want to eliminate each of this assertion. To begin with the first, let there exists a first 𝜁1 such that 

𝑓′′(𝜁1 ;𝛼) = 0 with 𝜆𝛼 < 𝑓′(𝜁;𝛼) < 1 for 𝜁 ∈ (0, 𝜁1]. Thus, 𝑓(𝜁;𝛼) is bounded and 𝜆𝛼𝜁 < 𝑓(𝜁;𝛼) < 𝜁 for 

𝜁 ∈ (0, 𝜁1]. Therefore,  

 𝑓 ′′  𝜁;𝛼 ≥ 𝛼 − 2𝜁1   𝑓𝑜𝑟  𝜁 ∈ (0, 𝜁1] (10) 

Thus, if we choose sufficiently large 𝛼 then 𝑓′′(𝜁;𝛼) > 0 for all 𝜁, which is clearly a contradiction. Again, the 

second assertion cannot happen for sufficiently large 𝛼 using a similar argument. Now we are left with the third 

possibility. 𝑓′′(𝜁;𝛼) = 0 and 𝑓′(𝜁;𝛼) = 1 happen simultaneously for sufficiently large 𝛼. From Eq. (6) we get 

𝑓𝑘(𝜁;𝛼) = 0 for 𝑘 ≥ 3, which implies 𝑓′(𝜁;𝛼) = 1 as a constant. This is contradicting the basic fact of initial 

value problem (6) with condition (8), as 𝑓 ′ 0 = 𝜆𝛼 ≠ 1. Therefore, sufficiently large 𝛼 is in B. 

Remark : The non-empty sets A and B are disjoint subset of (0,∞) and both are also open from lemmas (1)-(3). 

Proof of Theorem 1: The set (0,∞) is connected and hence 𝐴 ∪ 𝐵 = (0,∞) by previous remark. Thus, there 

exists 𝛼∗ which is neither in 𝐴 nor 𝐵. Also in Lemma (3) we observe that 𝑓′′(𝜁;𝛼∗) = 0 and 𝑓′(𝜁;𝛼∗) = 1 can 

not happen simultaneously. Therefore, the only one possibility is 𝑓′′(𝜁;𝛼) > 0 and 𝜆𝛼∗ < 𝑓′(𝜁;𝛼∗) < 1. From 

Eq. (6) we have 𝑓′(∞;𝛼) → 1, giving the existence of monotonic increasing solution of boundary value problem 

(6)-(7).  

Proof of Theorem 2: We claim that there exists a unique 𝛼 for the boundary value problem. For sake of 

contradiction suppose that two values of 𝛼 exist and which satisfy all the boundary conditions. The solutions are 

denoted as 𝑓′(𝜁;𝛼1) and 𝑓′(𝜁;𝛼2) (choose 𝛼2 > 𝛼1). Applying mean value theorem in the interval [𝛼1,𝛼2], we 

have  

 𝑓′(𝜁;𝛼2) − 𝑓′(𝜁;𝛼1) =  
𝜕𝑓′

𝜕𝛼
 
𝛼=𝛼′

(𝛼2 − 𝛼1), (11) 

where 𝛼′ ∈ [𝛼1 ,𝛼2]. Thus, for 𝜁 → ∞, 

  
𝜕𝑓′

𝜕𝛼
 (∞,𝛼′) = 𝑓′(∞,𝛼2) − 𝑓′(∞,𝛼1) = 0. (12) 

Now suppose that 
𝜕𝑓′

𝜕𝛼
= 𝑣′(𝜁;𝛼) and differentiating Eq. (6) and it’s initial conditions (8) with respect to 𝛼 we 

have,  

 𝑣′′′(𝜁;𝛼) + 𝑣(𝜁;𝛼)𝑓′′(𝜁;𝛼) + 𝑓(𝜁;𝛼)𝑣′′(𝜁;𝛼) − 2𝑓′(𝜁;𝛼)𝑣′(𝜁;𝛼) = 0 (13) 

 and 

        𝑣(0;𝛼) = 0, 𝑣′(0;𝛼) = 𝜆, 𝑣′′(0;𝛼) = 1, 𝑣′′′(0;𝛼) = 2𝜆2𝛼, (14) 

where prime denotes the differentiation with respect to 𝜁. Again, differentiating Eq. (13) w.r.t 𝜁, we get 

𝑣𝑖𝑣(𝜁;𝛼) = −𝑣(𝜁;𝛼)𝑓′′′(𝜁;𝛼) + 𝑣′(𝜁;𝛼)𝑓′′(𝜁;𝛼) + 𝑓′(𝜁;𝛼)𝑣′′(𝜁;𝛼)𝑓(𝜁;𝛼)𝑣′′′(𝜁;𝛼) (15) 

Therefore, 

 𝑣𝑖𝑣(0;𝛼) = 2𝜆𝛼 > 0 (16) 

Thus, from the initial condition (??) on 𝑣 we have 𝑣′(𝜁;𝛼) > 0, 𝑣′′(𝜁;𝛼) > 1 and 𝑣′′′(𝜁;𝛼) > 0 when 0 < 𝜁 <
𝜖 for some 𝜖 > 0. In particular, positive 𝑣′(𝜁;𝛼) is concave up increasing initially and to become zero, it has to 

change first from concave up to concave down. Thus there exists a first 𝜁2 such that 𝑣′′′(𝜁2;𝛼) = 0 and 

𝑣𝑖𝑣(𝜁2;𝛼) ≤ 0. But until this point 𝜁2, 𝑣(𝜁;𝛼) and all its derivatives through 𝑣′′′(𝜁;𝛼) are positive and 

increasing. Therefore, 𝑓(𝜁;𝛼) and all its derivative through 𝑓′′′(𝜁;𝛼) are increasing function with respect to 𝛼. 

Thus, for 𝛼 ∈ [𝛼1 ,𝛼2] we have  

𝑣𝑖𝑣(𝜁2;𝛼) = −𝑣(𝜁2;𝛼)𝑓′′′(𝜁2;𝛼) + 𝑣′(𝜁2;𝛼)𝑓′′(𝜁2;𝛼) + 𝑓′(𝜁2;𝛼)𝑣′′(𝜁2;𝛼) (17) 

which implies 𝑣𝑖𝑣(𝜁2;𝛼) > 0 and it is clearly a contradiction. Thus 𝑣′(𝜁;𝛼) can never become zero 

contradicting the fact (12). Hence, we conclude that there exists unique 𝛼 which satisfy all the boundary 

conditions.  

Remark : The solution of boundary value problem (6)-(7) exists and it is unique. Moreover, the solution is 

monotonic increasing. 
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IV. NUMERICAL RESULTS 
In this section, the resulting free boundary value problem (6), subject to boundary conditions (7) has 

been integrated using shooting method, which is a combination of fourth order Runge-Kutta method and a 

secant method. The numerical infinity (𝜁∞ ) is taken large enough and is kept unchanged throughout the 

program. The effects of slip parameter on the velocity components are shown in Figs. 1 and 2. Near the 

surface(i.e., at y=0), the velocity component, 𝑓′(𝜁) increases with an increase in the slip parameter 𝜆 and 

assumes its asymptotic value near to the surface. Thus, slip decreases the boundary layer thickness. The values 

of the missing initial guess, 𝑓′′(0) for different values of the slip parameter are tabulated in Table 1. Physically, 

𝑓′′(0) is the value of the skin friction coefficient. It is clear that the skin friction coefficient decreases with an 

increase in slip and the flow behaves like an in-viscid flow for high values of 𝜆. These findings are in agreement 

with the results of Wang [3]. 

 
𝝀 0 0.5 1 2 5 

)0(''f  1.232588 0.821479 0.593462 0.375886 0.177260 

Table  1: Variations of missing initial conditions 𝛼 with different value of slip parameter 𝜆. 

 
Figure  1: The similarity solution𝑓(𝜁) at different𝜆. 

 

 
Figure  2: Velocity profiles for different values of 𝜆. 
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V. CONCLUTIONS 
In this paper, the existence and uniqueness results are established for a non-linear third order 

differential equation, arising due to the two-dimensional stagnation point flow over a flat horizontal rough 

surface. Using topological shooting argument, we proved that there is a unique monotonic increasing solution to 

the nonlinear ordinary differential equation, subject to the slip boundary conditions. Also, it has been seen that 

the solutions 𝑓(𝜁) have the following properties:   

    1.  𝑓(𝜁) is monotonically increasing and non-negative; 

    2.  𝑓′(𝜁) is also monotonically increasing, non-negative and bounded; 

    3.  𝑓′′(𝜁) is monotonically decreasing, positive and bounded.  

Further, our qualitative analysis are supported by obtained numerical results and it also agrees with the results of 

Wang [3]. 
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